使用 Chroma 进行自查询

Chromaopen in new window 是一个用于构建带有嵌入向量的 AI 应用程序的数据库。

在笔记本中,我们将演示围绕 Chroma 向量存储器包装的 SelfQueryRetriever

创建 Chroma 向量存储器

首先,我们需要创建一个 Chroma 向量存储器,并用一些数据填充它。我们已经创建了一个包含电影摘要的小型演示数据集。

注意:自查询检索器需要安装 larkpip install lark)。我们还需要安装 chromadb 包。

#!pip install lark
#!pip install chromadb

我们想要使用 OpenAIEmbeddings,因此我们需要获取 OpenAI API 密钥。

import os
import getpass

os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')
OpenAI API Key: ········
from langchain.schema import Document
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma

embeddings = OpenAIEmbeddings()
docs = [
    Document(page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose", metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"}),
    Document(page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...", metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2}),
    Document(page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea", metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6}),
    Document(page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them", metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3}),
    Document(page_content="Toys come alive and have a blast doing so", metadata={"year": 1995, "genre": "animated"}),
    Document(page_content="Three men walk into the Zone, three men walk out of the Zone", metadata={"year": 1979, "rating": 9.9, "director": "Andrei Tarkovsky", "genre": "science fiction", "rating": 9.9})
]
vectorstore = Chroma.from_documents(
    docs, embeddings
)
Using embedded DuckDB without persistence: data will be transient

创建自查询检索器

现在,我们可以实例化我们的检索器了。为此,我们需要提供一些关于文档支持的元数据字段以及文档内容的简短描述的信息。

from langchain.llms import OpenAI
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.base import AttributeInfo

metadata_field_info=[
    AttributeInfo(
        name="genre",
        description="The genre of the movie", 
        type="string or list[string]", 
    ),
    AttributeInfo(
        name="year",
        description="The year the movie was released", 
        type="integer", 
    ),
    AttributeInfo(
        name="director",
        description="The name of the movie director", 
        type="string", 
    ),
    AttributeInfo(
        name="rating",
        description="A 1-10 rating for the movie",
        type="float"
    ),
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(llm, vectorstore, document_content_description, metadata_field_info, verbose=True)

测试一下

现在,我们可以尝试实际使用我们的检索器了!

# This example only specifies a relevant query
retriever.get_relevant_documents("What are some movies about dinosaurs")
query='dinosaur' filter=None





[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),
 Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'}),
 Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6}),
 Document(page_content='Leo DiCaprio gets lost in a dream within a dream within a dream within a ...', metadata={'year': 2010, 'director': 'Christopher Nolan', 'rating': 8.2})]
# This example only specifies a filter
retriever.get_relevant_documents("I want to watch a movie rated higher than 8.5")
query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)





[Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6}),
 Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})]
# This example specifies a query and a filter
retriever.get_relevant_documents("Has Greta Gerwig directed any movies about women")
query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig')





[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'year': 2019, 'director': 'Greta Gerwig', 'rating': 8.3})]
# This example specifies a composite filter
retriever.get_relevant_documents("What's a highly rated (above 8.5) science fiction film?")
query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction'), Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)])





[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})]
# This example specifies a query and composite filter
retriever.get_relevant_documents("What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated")
query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated')])





[Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]

过滤 k

我们还可以使用自查询检索器来指定 k:要获取的文档数量。

我们可以通过将 enable_limit=True 传递给构造函数来实现。

retriever = SelfQueryRetriever.from_llm(
    llm, 
    vectorstore, 
    document_content_description, 
    metadata_field_info, 
    enable_limit=True,
    verbose=True
)
# This example only specifies a relevant query
retriever.get_relevant_documents("what are two movies about dinosaurs")
query='dinosaur' filter=None

[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),
 Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'}),
 Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6}),
 Document(page_content='Leo DiCaprio gets lost in a dream within a dream within a dream within a ...', metadata={'year': 2010, 'director': 'Christopher Nolan', 'rating': 8.2})]
Last Updated:
Contributors: 刘强