使用Qdrant进行自查询

Qdrantopen in new window(读作:quadrant)是一个向量相似性搜索引擎。它提供一个可用于存储、搜索和管理带有附加有效载荷的点(向量)的生产就绪服务的便捷API。Qdrant专注于扩展过滤支持,因此非常有用。

在笔记本中,我们将演示围绕Qdrant向量存储器包装的SelfQueryRetriever的使用。

创建Qdrant向量存储器

首先,我们需要创建一个Chroma向量存储器,并使用一些数据填充它。我们已经创建了一小组包含电影摘要的演示文档。

注意:自查询检索器需要你安装larkpip install lark)。我们还需要qdrant-client包。

#!pip install lark qdrant-client

We want to use OpenAIEmbeddings so we have to get the OpenAI API Key.

# import os
# import getpass

# os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')
from langchain.schema import Document
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Qdrant

embeddings = OpenAIEmbeddings()
docs = [
    Document(page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose", metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"}),
    Document(page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...", metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2}),
    Document(page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea", metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6}),
    Document(page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them", metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3}),
    Document(page_content="Toys come alive and have a blast doing so", metadata={"year": 1995, "genre": "animated"}),
    Document(page_content="Three men walk into the Zone, three men walk out of the Zone", metadata={"year": 1979, "rating": 9.9, "director": "Andrei Tarkovsky", "genre": "science fiction", "rating": 9.9})
]
vectorstore = Qdrant.from_documents(
    docs, 
    embeddings, 
    location=":memory:",  # Local mode with in-memory storage only
    collection_name="my_documents",
)

创建自查询检索器

现在,我们可以实例化我们的检索器了。为此,我们需要提前提供一些关于文档支持的元数据字段以及文档内容的简短描述的信息。

from langchain.llms import OpenAI
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.base import AttributeInfo

metadata_field_info=[
    AttributeInfo(
        name="genre",
        description="The genre of the movie", 
        type="string or list[string]", 
    ),
    AttributeInfo(
        name="year",
        description="The year the movie was released", 
        type="integer", 
    ),
    AttributeInfo(
        name="director",
        description="The name of the movie director", 
        type="string", 
    ),
    AttributeInfo(
        name="rating",
        description="A 1-10 rating for the movie",
        type="float"
    ),
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(llm, vectorstore, document_content_description, metadata_field_info, verbose=True)

测试一下

现在,我们可以尝试实际使用我们的检索器了!

# This example only specifies a relevant query
retriever.get_relevant_documents("What are some movies about dinosaurs")
query='dinosaur' filter=None limit=None

[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),
 Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'}),
 Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'}),
 Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6})]
# This example only specifies a filter
retriever.get_relevant_documents("I want to watch a movie rated higher than 8.5")
query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5) limit=None

[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'}),
 Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6})]
# This example specifies a query and a filter
retriever.get_relevant_documents("Has Greta Gerwig directed any movies about women")
query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig') limit=None

[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'year': 2019, 'director': 'Greta Gerwig', 'rating': 8.3})]
# This example specifies a composite filter
retriever.get_relevant_documents("What's a highly rated (above 8.5) science fiction film?")
query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction')]) limit=None

[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})]
# This example specifies a query and composite filter
retriever.get_relevant_documents("What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated")
query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated')]) limit=None

[Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]

过滤k个结果

我们还可以使用自查询检索器来指定 k:要获取的文档数量。

我们可以通过在构造函数中传递 enable_limit=True 来实现这一点。

retriever = SelfQueryRetriever.from_llm(
    llm, 
    vectorstore, 
    document_content_description, 
    metadata_field_info, 
    enable_limit=True,
    verbose=True
)
# This example only specifies a relevant query
retriever.get_relevant_documents("what are two movies about dinosaurs")
query='dinosaur' filter=None limit=2

[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),
 Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]
Last Updated:
Contributors: 刘强